


# Zero-VIRUS: Zero-shot Vehicle Route Understanding System for Intelligent Transportation

Lijun Yu<sup>1</sup> Qianyu Feng<sup>1,2</sup> Yijun Qian<sup>1</sup> Wenhe Liu<sup>1</sup> Alexander G. Hauptmann<sup>1</sup>

<sup>1</sup>Carnegie Mellon University <sup>2</sup>University of Technology Sydney

lijun@cmu.edu

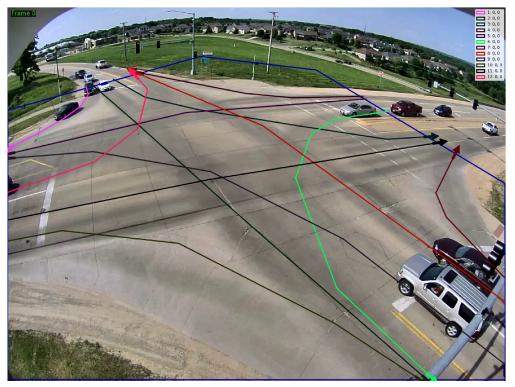


Carnegie Mellon University

Language Technologies Institute

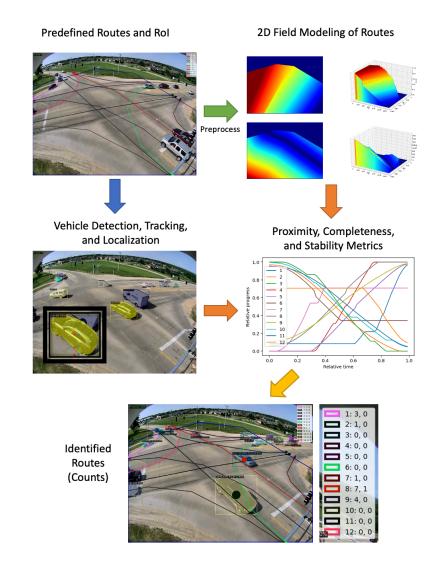


#### Introduction


• Al City Challenge 2020 Track 1: Multi-Class Multi-Movement Vehicle Counting

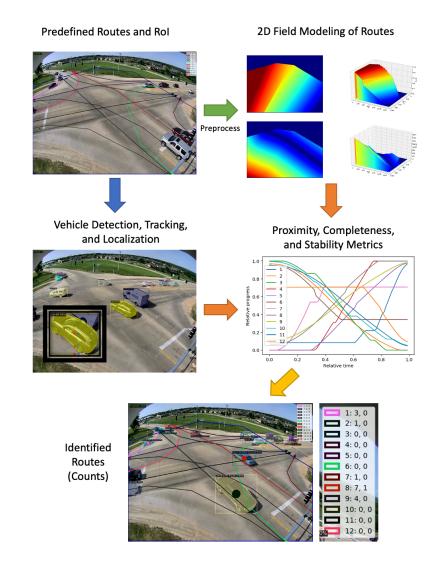
• Input:

- Video from a stable surveillance camera view
- Pre-defined region and movements


• Goal:

- Report the movement ID of each vehicle at the time of exiting the region
- No ground truth provided




# Approach Overview

- Vehicle trajectory
  - Detection, tracking, localization
- Pre-defined route
  - 2D field modeling as feature representation
- Trajectory vs. route
  - similarity metrics: proximity, completeness, stability
- Route classification and vehicle counting

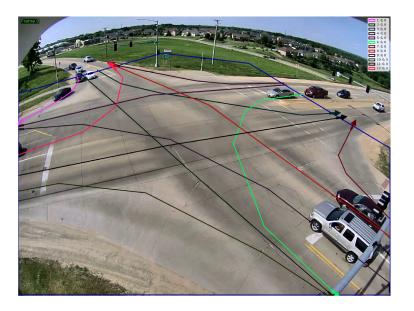


# Design Advantage

- No data required
  - No need for ground truth labels
  - No need for statistics
- Online processing
  - Frame by frame for deployment
  - No post-processing, e.g. clustering
- Easy adaption
  - New camera: just define the routes



# Vehicle Detection and Tracking


- Detection: Mask R-CNN
  - ResNeXt-101-FPN backbone, trained on COCO
- Tracking: Towards-Realtime-MOT
  - Rol feature from detection model
- Object classes: Car, Truck
  - inconsistent definition with COCO, e.g. pickups
  - Weighted inter-class non-maximum suppression
  - Tracklet label refinement



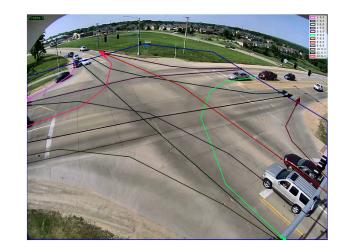
# Trajectory Enhancement

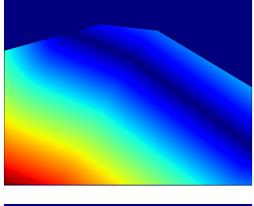
- Localization with segmentation
  - Point C: bottom center of segmentation mask
  - Scale factor: diagonal of bounding box
- Interpolation and smoothing
  - Linear interpolation to fill in gaps
  - 1D-gaussian smoothing
- Movement and region filter
  - Filter out stopped period based on local average speed, e.g. traffic lights or jams
  - Within a pre-defined region of interest

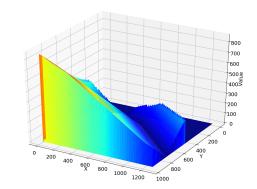


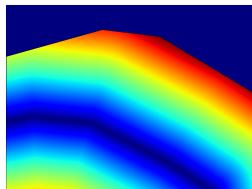


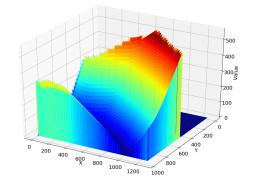
# Route Modeling


- Route: A polyline  $\mathbf{R}_i = \begin{bmatrix} P_1^i & P_2^i & \dots & P_n^i \end{bmatrix}_i^T$
- Proximity field: distance to a route


 $\mathbf{F}_{p,\mathbf{R}_i}(X) = \min_j d(X, \overline{P_j^i P_{j+1}^i})$ 


• point-segment distance


$$d(X, \overline{P_j^i P_{j+1}^i}) = \begin{cases} \|\overrightarrow{XP_j^i}\| & \alpha_j \le 0\\ \|\overrightarrow{XX_j^i}\| & 0 < \alpha_j < 1\\ \|\overrightarrow{XP_{j+1}^i}\| & \alpha_j \ge 1 \end{cases}$$


$$X_{j}^{i} = P_{j}^{i} + \alpha_{j}^{i}(X) \overrightarrow{P_{j}^{i}P_{j+1}^{i}}$$
$$\alpha_{j}^{i}(X) = \frac{\overrightarrow{P_{j}^{i}X} \cdot \overrightarrow{P_{j}^{i}P_{j+1}^{i}}}{\|\overrightarrow{P_{j}^{i}P_{j+1}^{i}}\|^{2}}$$

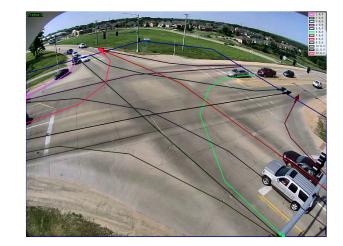


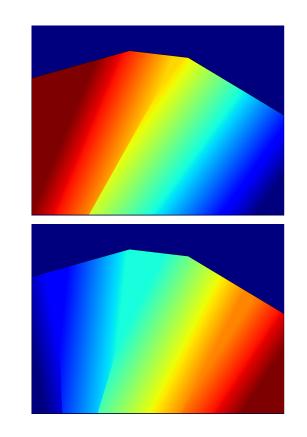


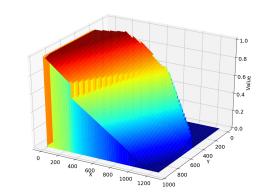


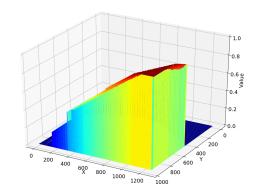





### Route Modeling


• Completeness field: relative location within a route


$$\mathbf{F}_{c,\mathbf{R}_{i}}(X) = \frac{\alpha_{j^{*}}^{i}(X) \| \overrightarrow{P_{j^{*}}^{i} P_{j^{*}+1}^{i}} \| + \sum_{j=1}^{j^{*}-1} \| \overrightarrow{P_{j}^{i} P_{j+1}^{i}} \|}{\sum_{j=1}^{n-1} \| \overrightarrow{P_{j}^{i} P_{j+1}^{i}} \|}$$

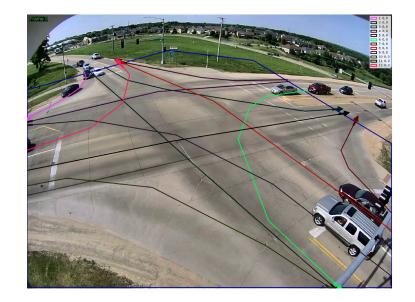

$$j^* = \operatorname*{arg\,min}_{j=1,2,\ldots,n-1} d(X, \overline{P^i_j P^i_{j+1}})$$

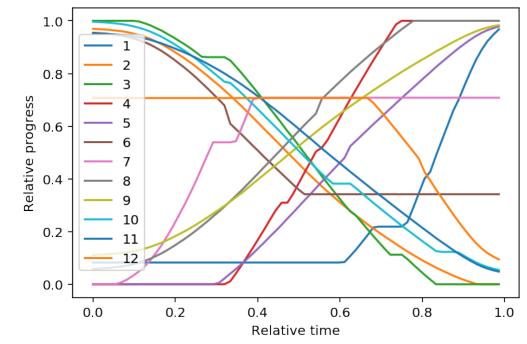
$$\alpha_j^i(X) = \frac{\overrightarrow{P_j^i X} \cdot \overrightarrow{P_j^i P_{j+1}^i}}{\|\overrightarrow{P_j^i P_{j+1}^i}\|^2}$$











# Route Identification

• Proximity metric: scale-normalized average distance

$$d(\mathbf{T}_{x,j}, \mathbf{R}_i) = \frac{\mathbf{F}_{p,\mathbf{R}_i}(\mathbf{P}_{x,j})}{\mathbf{S}_{x,j}}$$
$$M_p(\mathbf{T}_x, \mathbf{R}_i) = \sigma(a - b\frac{1}{n}\sum_{j=1}^n d(\mathbf{T}_{x,j}, \mathbf{R}_i))$$

- Completeness metric: how a vehicle goes along a route
  - Linear model to approximate change of completeness. A perfect slope should be 1  $M_{c}(\mathbf{T}_{x}, \mathbf{R}_{i}) = \min(c_{x,i}, \frac{1}{c_{x,i}})$

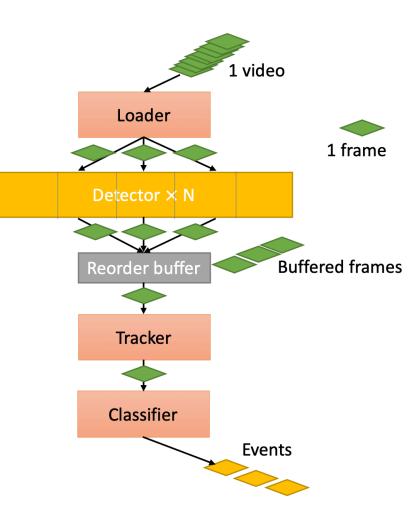




#### Route Identification

- Stability Metric: does vehicle go along the route at constant distance
  - Linear model to approximate the change of scale-normalized distance. A perfect slope should be 0.  $d(\mathbf{T} + \mathbf{R}) = e^{-j} \frac{j}{2} + f^{-j}$

$$d(\mathbf{T}_{x,j},\mathbf{R}_i)=e_{x,i}rac{J}{n}+f_{x,i}$$
 $M_s(\mathbf{T}_x,\mathbf{R}_i)=\exp(-rac{1}{2}e_{x,i}^2)$ 


• Aggregation and classification

$$egin{aligned} S(\mathbf{T}_x, \mathbf{R}_i) &= \min(1, \max(0, w_p M_p(\mathbf{T}_x, \mathbf{R}_i))) \ &+ \min(1, \max(0, w_c M_c(\mathbf{T}_x, \mathbf{R}_i))) \ &+ \min(1, \max(0, w_s M_s(\mathbf{T}_x, \mathbf{R}_i))) \end{aligned}$$

$$C(\mathbf{T}_x, \mathbf{R}) = rg\max_i S(\mathbf{T}_x, \mathbf{R}_i)$$

# System Implementation

- Mask R-CNN from Detectron2 in PyTorch
- Toward-Realtime-MOT from its author
- Pipelined system
  - Frame-level parallelism
  - Out-of-order execution for bottleneck
  - 9 fps on single 2080Ti GPU
  - Support up to 8 GPUs



#### Dataset and Metrics

- 2020 AI City Challenge Track 1 dataset split A
  - 5 hours video
  - 20 unique cameras in different light and weather conditions
  - Diagrams of routes with text descriptions of each camera
- Our annotation: route polylines of each camera
- Official metric:
  - Efficiency: running time and a base factor of hardware
  - Effectiveness:

$$wRMSE = \sqrt{\sum_{i=1}^{k} \frac{i}{\sum_{j=1}^{k} j} (\hat{x}_i - x_i)^2}$$

### Results

- No ground truth provided
- Only leaderboard results
- Full test set

| Rank          | Team ID | Team name (and paper) | Score  |
|---------------|---------|-----------------------|--------|
| 1             | 99      | Baidu [20]            | 0.9389 |
| 2             | 110     | ENGIE [27]            | 0.9346 |
| 3             | 92      | CMU [46]              | 0.9292 |
| 6             | 74      | BUT [37]              | 0.8829 |
| 7             | 6       | KISTI [5]             | 0.8540 |
| 9             | 80      | HCMUS [43]            | 0.8064 |
| 13            | 75      | UAlbany [6]           | 0.3116 |
| N/A (General) | 60      | DiDi [2]              | 0.9260 |
| N/A (General) | 108     | VT [1]                | 0.8138 |

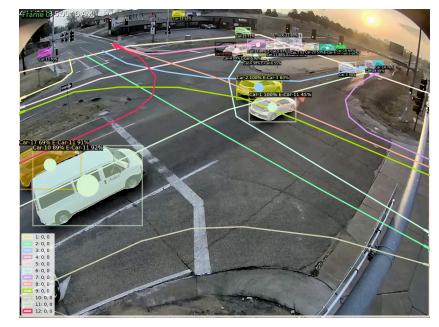
Table 1. Summary of the Track 1 leader board.

- 50% test set
  - Maybe overfitted, maybe imbalanced subset

| Rank | TeamID | Score  |
|------|--------|--------|
| 1    | Ours   | 0.9444 |
| 2    | 99     | 0.9415 |
| 3    | 110    | 0.9381 |

### Ablations

- Effectiveness of three metrics on a 60-second clip
  - Proximity metric, completeness metric, stability metric


| Metrics         | Effectiveness Score |
|-----------------|---------------------|
| $M_p$           | 0.8903              |
| $M_p, M_c$      | 0.9455              |
| $M_p, M_c, M_s$ | 0.9554              |

## Qualitative Results





#### https://drive.google.com/drive/folders/1s3TPykPa3JTaPOHUVO QF8S4iUi3SduAN?usp=sharing





#### Conclusion

- Zero-shot vehicle route identification
  - Minimal manual effort: define routes
  - Effective and efficient
- Future improvement
  - Detector: finetune between Car and Truck ----Biggest problem now
  - Trajectory: use ground trajectory if cameras are calibrated
- Zero-VIRUS, no coronavirus!