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Introduction



Motivation

* Large-scale surveillance data to analysis

* Supervised learning systems rely on massive training data
* Huge investment of time and labor in annotation
* Challenging to collect rare events like traffic crashes

* Limitations of 2D video analysis
* Occlusions and different viewing angles
* Imprecise speed and location

* Expensive to setup 3D/RGB-D cameras



System Overview

* First attempt of a training-free
system for large-scale traffic
event detection

* Monocular 3D approach
robust to occlusions and
camera viewing angles

e Real-time stream processing,
outperforms training-based
baseline on challenging real-
world surveillance dataset

Video stream

2D Trajectories

Kinematic states

Vehicle actions &
traffic collisions




Input Frame

Object Detection

3D Bounding Box
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Monocular 3D
Surveillance

Ground Projection
13.2km/h




2D Detection

* Image Object Detection
* Mask R-CNN
* Trained on Microsoft COCO

* Output: Object type, detection score,
2D bounding box, object mask,
ROI feature

* Online Object Tracking
* Deep SORT using ROI feature

» Kalman filter with a constant velocity
model

* Output: Vehicle ID, 2D location, speed




3D Projection

 Camera Calibration %
* Euclidean 3D point X = (Y) , 2D image point X =
Z
Projection matrix P T )15
e 1) Provided K, R, t ? =KIR[t]| ;| =P
1

2) Provided vanishing points
3) Manual labeling parallel lines

* 3D Bounding Box
e Contour from 2D mask

e Speed vector by projecting the states of Kalman filter
* Ground location by re-projecting the bottom

13.2km/h




Training-free Event Detection



Vehicle Action Detection

* Event types:
* Turning events: vehicle turning left, vehicle turning right, vehicle U-turn
* Linear events: vehicle starting, vehicle stopping

e State Estimation

2 2
* Ground speed vector v = (Za’> in polar coordinates v = (vr) _ ( \/%T’vy )

y Ve atan2 (v, v;)
* Acceleration a;, ¢ , ag ¢, estimated by local linear regression
OLS in a sliding window
Urt = ﬁr + ar,tot

Vo.t = Po + ag.¢,t



Vehicle Action Detection

* Trigger-driven Detection Model
* Training-free and explainable,

parameters with physical meaning

* Frame-level condition of trigger and
border (looser), and further classification

3) Turning Events: The trigger and border conditions of
turning events are

|a0| > Qa9 trigger and (I Vturn_min (6)
|(19| Z Qa9 border and Ur Z Viurn_min (7)

where ag ¢rigger > @9 border- FOr a turning event started at
and ended at ¢., the turning angle can be calculated as

6= Vo,t. — Vo,t, (8)

where 6 € (—180,180]. The valid condition of turning events
is

te - ts 2 tturn_min and |9| > omin (9)

Then these events are further classified as
o Vehicle turning left, if 6, < 6 < Omaa
o Vehicle turning right, if —6,,,,. < 0 < —Oin
e Vehicle U-turn, if @ > 0,,,, or 0 < —0,0x
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4) Linear Events: 'LI'he trigger and border conditions ot
linear events are

|a1”| 2 Qr trigger (10)
|ar| Z Ay border (11)

where a, trigger > Qrporder- FOIr a linear event started at ¢,
and ended at ¢., the valid condition is

te - ts Z tlinear_min
and min(vr,ts,vr,tc) < VUstop_maxzx (12)

and maX(UT,tS,UT,tC) > Umove_min

Then these events are further classified as

o Vehicle starting, if v, ¢, < Vstop_max
and Ur.t. Z VUmove_min

« Vehicle stopping, if vy ¢, > Vmove_min
and Ur,t, S vstop_maz

o Invalid event, otherwise




Traffic Collision Detection

e Distance Measurement

* Measure minimum distance between each pair of quadrangle vehicles on
projected ground location

e Alert for continuous decline

* Collision Detection
* Location prediction for very near future
* Fixed speed kinematic model

* Check overlap of rigid bodies in predictions
 Sign of future collision



Experiments



Implementation Details

* Realtime stream execution

* Bottleneck: object detection
* Frame-level parallelism
e OQut-of-order execution and reorder

» System efficiency

e Stream video at 1080p

* 4 Nvidia RTX 2080Ti GPUs and
128GB memory

* Throughput 18fps
* Latency 0.2s

1 frame

S i <@ Buffered frames

Tracker

3D Projector

Event Detector

Events



Datasets and Baseline

* Multiview Extended Video with Activities (MEVA)
e 2000 videos X 5 minutes, 1080p, 30fps

* Annotated by our team, Train: 4870 minutes;
Test: 500 minutes (160 minutes outdoor scenes
on calibrated cameras)

e Baseline: training-based system using optical flow
features and RNN classifier

e Car Accident Detection and Prediction (CADP)



Detection and Tracking Result

* Shared backbone of detection and tracking

e Upper bound of event detection performance for both systems

* Event loU: mean of object loU over all frames, matched with

Hungarian algorithm
e Recall at different loU threshold

DETECTION AND TRACKING RESULT (RECALL)

Event IoU Threshold 0 0.1 0.2 0.3
Vehicle turning left 095 0.78 0.59 0.62
Vehicle turning right | 091 0.71 059 0.35
Vehicle U-turn 090 0.76 0.63 0.54
Vehicle starting 095 089 079 0.73
Vehicle stopping 090 0.79 0.74 0.62
Average 093 078 0.65 0.51




Event Detection Metrics

e Official ActEV Scorer (ActEV19_AD_V2) from TRECVID benchmark

* Solid lines: our training-free model

Transparent lines: training-based model

GENERAL METRICS OVER ALL DETECTED EVENTS
(LOWER IS BETTER FOR ALL METRICS)

Training-free System

Training-based System

Ppiiss Rfa Tfa Priiss Rfa Tfa

Vehicle turning left 0.36 0.68 0.24 0.64 1.92 0.12

Vehicle turning right 0.47 0.85 0.25 0.77 1.14 0.08

Vehicle U-turn 0.53 0.98 040 1.00 0.03 0.00

Vehicle starting 0.52 043 0.26 0.32 2222 240

Vehicle stopping 0.68 0.12 0.12 1.00 0.00 0.00
Mean 0.60 0.88

Prob. of Miss Detection
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Bird's eye view of the ground
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Traffic Collision Detection

+0.00s

e Still ongoing due to lack of
calibration
* Manually annotated a few

 Automatic calibration
model
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Raw Frame

__Detection Result

Real Time Plane Map Plane Map for +0.12s Plane Map for +0.24s



Conclusion

* Real-time traffic event detection system for traffic surveillance safety

* First attempt of a training-free system for large-scale traffic event
detection

* Monocular 3D method to overcome issues of occlusions and camera
viewing angles

* Real-time processing for large-scale traffic data

* Significantly outperforms the existing training-based system on real-
world surveillance dataset



Thanks for your attention!



