

Training-free Monocular 3D Event Detection System for Traffic Surveillance

Lijun Yu^{*}, Peng Chen¹, Wenhe Liu, Guoliang Kang, Alexander G. Hauptmann

> Carnegie Mellon University Peking University¹

Introduction

Motivation

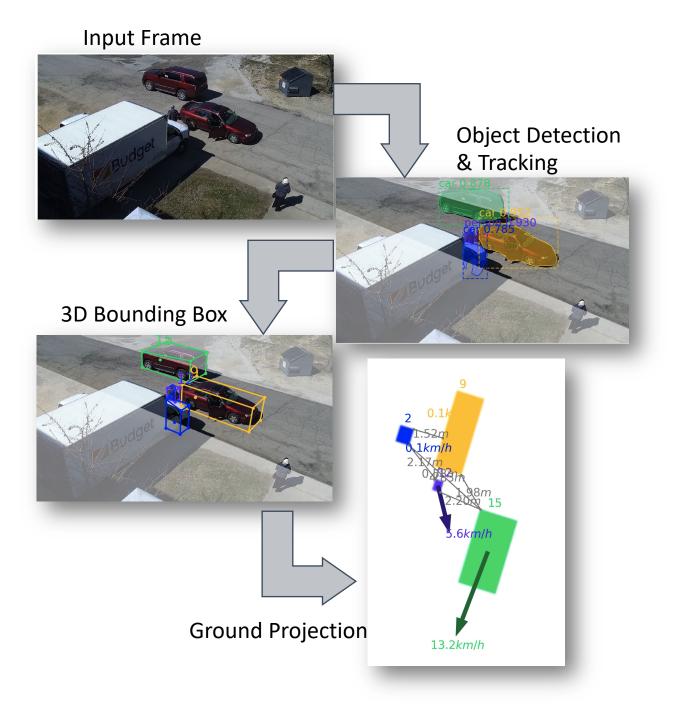
- Large-scale surveillance data to analysis
- Supervised learning systems rely on massive training data
 - Huge investment of time and labor in annotation
 - Challenging to collect rare events like traffic crashes
- Limitations of 2D video analysis
 - Occlusions and different viewing angles
 - Imprecise speed and location
- Expensive to setup 3D/RGB–D cameras

System Overview

- First attempt of a training-free system for large-scale traffic event detection
- Monocular 3D approach robust to occlusions and camera viewing angles
- Real-time stream processing, outperforms training-based baseline on challenging realworld surveillance dataset

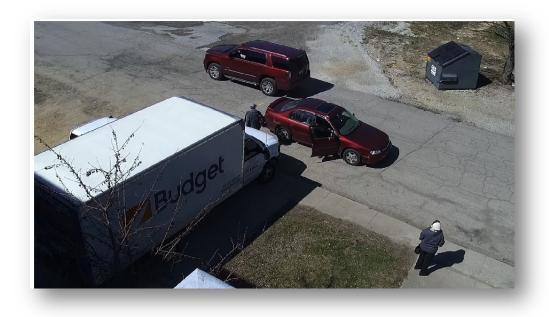


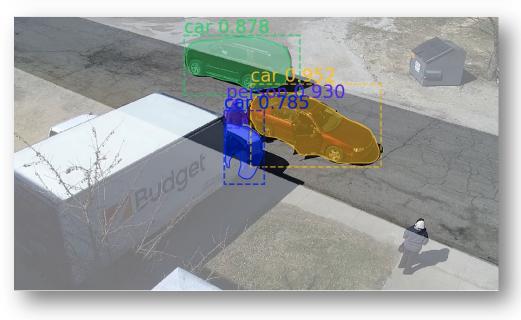
Monocular 3D Surveillance



2D Detection

- Image Object Detection
 - Mask R-CNN
 - Trained on Microsoft COCO
 - Output: Object type, detection score, 2D bounding box, object mask, ROI feature
- Online Object Tracking
 - Deep SORT using ROI feature
 - Kalman filter with a constant velocity model
 - Output: Vehicle ID, 2D location, speed



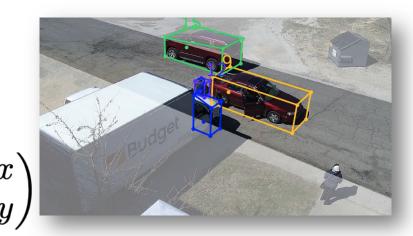


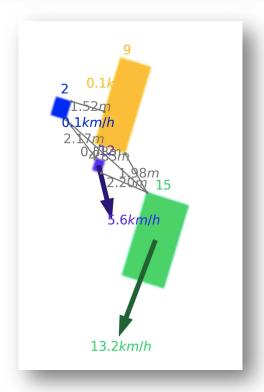
3D Projection

- Camera Calibration
 - Euclidean 3D point $\mathbf{X} = \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}$, 2D image point $\mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix}$

Projection matrix P

- $\begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = K[R|t] \begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = P \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}$ • 1) Provided *K*, *R*, *t* 2) Provided vanishing points 3) Manual labeling parallel lines
- 3D Bounding Box
 - Contour from 2D mask
 - Speed vector by projecting the states of Kalman filter
 - Ground location by re-projecting the bottom





Training-free Event Detection

Vehicle Action Detection

- Event types:
 - Turning events: vehicle turning left, vehicle turning right, vehicle U-turn
 - Linear events: vehicle starting, vehicle stopping
- State Estimation

• Ground speed vector
$$\mathbf{v} = \begin{pmatrix} v_x \\ v_y \end{pmatrix}$$
 in polar coordinates $\hat{\mathbf{v}} = \begin{pmatrix} v_r \\ v_{\theta} \end{pmatrix} = \begin{pmatrix} \sqrt{v_x^2 + v_y^2} \\ \operatorname{atan2}(v_y, v_x) \end{pmatrix}$

• Acceleration a_{r,t_0} , a_{θ,t_0} estimated by local linear regression OLS in a sliding window

$$v_{r,t} = eta_r + a_{r,t_0} t$$

 $v_{ heta,t} = eta_ heta + a_{ heta,t_0} t$

Vehicle Action Detection

- Trigger-driven Detection Model
 - Training-free and explainable, parameters with physical meaning
 - Frame-level condition of trigger and border (looser), and further classification

3) Turning Events: The trigger and border conditions of turning events are

$$|a_{\theta}| \ge a_{\theta, trigger} \text{ and } v_r \ge v_{turn_min}$$
 (6)

$$|a_{\theta}| \ge a_{\theta, border} \text{ and } v_r \ge v_{turn_min}$$
 (7)

where $a_{\theta,trigger} > a_{\theta,border}$. For a turning event started at t_s and ended at t_e , the turning angle can be calculated as

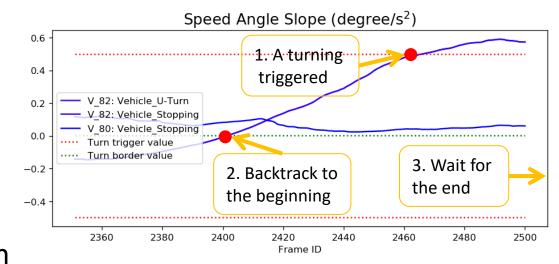
$$\theta = v_{\theta, t_e} - v_{\theta, t_s} \tag{8}$$

where $\theta \in (-180, 180]$. The valid condition of turning events is

$$t_e - t_s \ge t_{turn_min} \text{ and } |\theta| > \theta_{min}$$
 (9)

Then these events are further classified as

- Vehicle turning left, if $\theta_{min} < \theta < \theta_{max}$
- Vehicle turning right, if $-\theta_{max} < \theta < -\theta_{min}$
- Vehicle U-turn, if $\theta > \theta_{max}$ or $\theta < -\theta_{max}$



4) Linear Events: The trigger and border conditions of linear events are

$$|a_r| \ge a_{r,trigger} \tag{10}$$

$$a_r| \ge a_{r,border} \tag{11}$$

where $a_{r,trigger} > a_{r,border}$. For a linear event started at t_s and ended at t_e , the valid condition is

$$t_{e} - t_{s} \ge t_{linear_min}$$

and $\min(v_{r,t_{s}}, v_{r,t_{e}}) \le v_{stop_max}$ (12)
and $\max(v_{r,t_{s}}, v_{r,t_{e}}) \ge v_{move_min}$

Then these events are further classified as

- Vehicle starting, if $v_{r,t_s} \leq v_{stop_max}$ and $v_{r,t_e} \geq v_{move_min}$
- Vehicle stopping, if $v_{r,t_s} \ge v_{move_min}$ and $v_{r,t_e} \le v_{stop_max}$
- Invalid event, otherwise

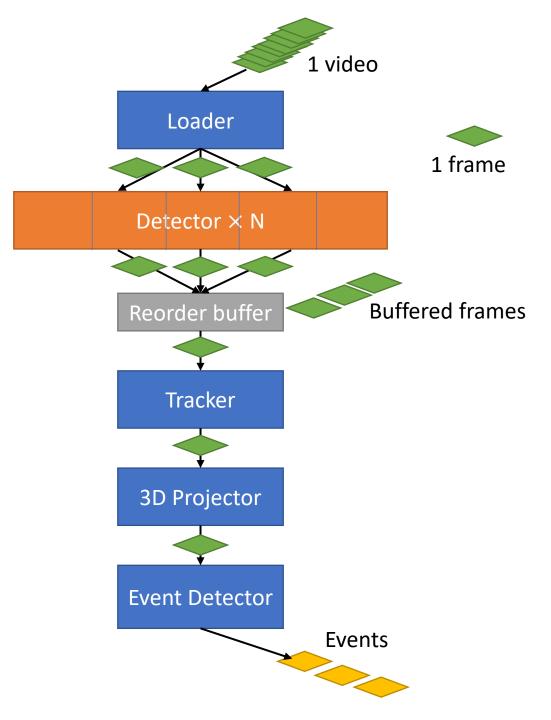
Traffic Collision Detection

- Distance Measurement
 - Measure minimum distance between each pair of quadrangle vehicles on projected ground location
 - Alert for continuous decline
- Collision Detection
 - Location prediction for very near future
 - Fixed speed kinematic model
 - Check overlap of rigid bodies in predictions
 - Sign of future collision

Experiments

Implementation Details

- Realtime stream execution
- Bottleneck: object detection
 - Frame-level parallelism
 - Out-of-order execution and reorder
- System efficiency
 - Stream video at 1080p
 - 4 Nvidia RTX 2080Ti GPUs and 128GB memory
 - Throughput 18fps
 - Latency 0.2s



Datasets and Baseline

- Multiview Extended Video with Activities (MEVA)
- 2000 videos × 5 minutes, 1080p, 30fps
- Annotated by our team, Train: 4870 minutes; Test: 500 minutes (160 minutes outdoor scenes on calibrated cameras)
- Baseline: training-based system using optical flow features and RNN classifier
- Car Accident Detection and Prediction (CADP)

Detection and Tracking Result

- Shared backbone of detection and tracking
- Upper bound of event detection performance for both systems
- Event IoU: mean of object IoU over all frames, matched with Hungarian algorithm
- Recall at different IoU threshold

DETECTION AND TRACKING RESULT (RECALL)

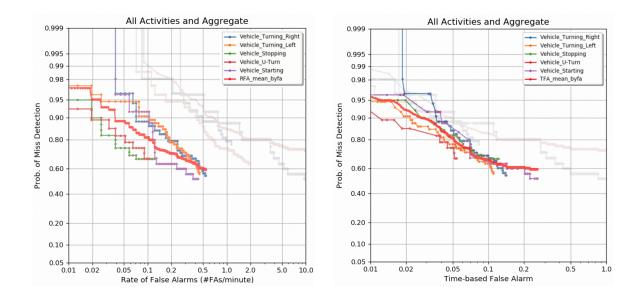
Event IoU Threshold	0	0.1	0.2	0.3
Vehicle turning left	0.95	0.78	0.59	0.62
Vehicle turning right	0.91	0.71	0.59	0.35
Vehicle U-turn	0.90	0.76	0.63	0.54
Vehicle starting	0.95	0.89	0.79	0.73
Vehicle stopping	0.90	0.79	0.74	0.62
Average	0.93	0.78	0.65	0.51

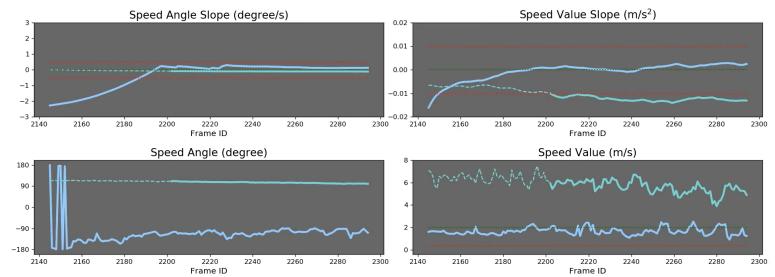
Event Detection Metrics

- Official ActEV Scorer (ActEV19_AD_V2) from TRECVID benchmark
- Solid lines: our training-free model Transparent lines: training-based model

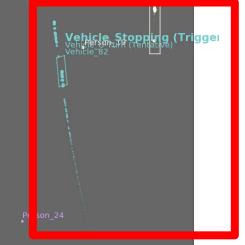
	Training-free System			Training-based System		
	P_{miss}	R_{fa}	T_{fa}	P_{miss}	R_{fa}	T_{fa}
Vehicle turning left	0.36	0.68	0.24	0.64	1.92	0.12
Vehicle turning right	0.47	0.85	0.25	0.77	1.14	0.08
Vehicle U-turn	0.53	0.98	0.40	1.00	0.03	0.00
Vehicle starting	0.52	0.43	0.26	0.32	22.22	2.40
Vehicle stopping	0.68	0.12	0.12	1.00	0.00	0.00
Mean	0.60	-	-	0.88	-	-

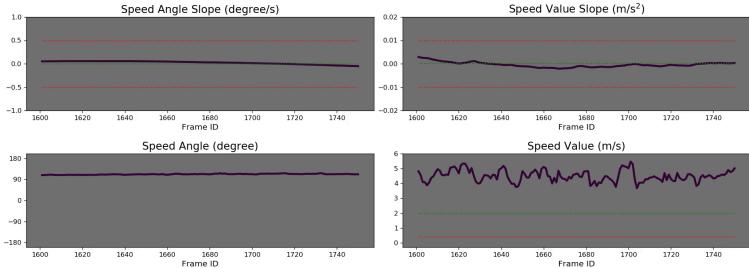
GENERAL METRICS OVER ALL DETECTED EVENTS (LOWER IS BETTER FOR ALL METRICS)





Bird's eye view of the ground





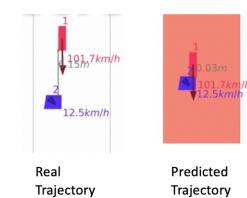
Vehicle_Turning_Right

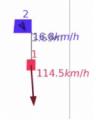
Traffic Collision Detection

- Still ongoing due to lack of calibration
 - Manually annotated a few
 - Automatic calibration model

+0.00s

+0.24s





Predicted Trajectory

Real Time Plane Map

Plane Map for +0.12s

Plane Map for +0.24s

Conclusion

- Real-time traffic event detection system for traffic surveillance safety
- First attempt of a training-free system for large-scale traffic event detection
- Monocular 3D method to overcome issues of occlusions and camera viewing angles
- Real-time processing for large-scale traffic data
- Significantly outperforms the existing training-based system on realworld surveillance dataset

Thanks for your attention!