MOBA-Slice: A Time Slice Based Evaluation Framework of Relative Advantage between Teams in MOBA Games

Lijun Yu^{1,2} Dawei Zhang² Xiangqun Chen¹ Xing Xie²

¹Peking University
yulijun@pku.edu.cn, cherry@sei.pku.edu.cn

²Microsoft Research Asia
zhangdawei@outlook.com, xing.xie@microsoft.com

Computer Games Workshop at IJCAI, 2018

Outline

- Introduction
 - Background
 - Contribution
- MOBA-Slice
 - MOBA Game Result (MGR) Analysis
 - Discounted Evaluation
 - Time Slice Evaluation (TSE) Model
- 3 Experiments
 - Apply MOBA-Slice to DotA2
 - Data Processing
 - First Training of TSE Model
 - Prediction on Continuous Time Slices
 - Comparison with DotA Plus Assistant
 - Towards Better Performance
- Conclusion

Background Information

- Multiplayer Online Battle Arena (MOBA)
- Defense of the Ancients 2 (DotA2)
- Hard to evaluate real-time game situation
- Evaluation is needed in strategy analysis, Al developing . . .

(a) A Typical MOBA Map

(b) DotA 2 Mini Map

Figure 1: Maps

Our Contribution

- We introduce MOBA-Slice, a time slice based evaluation framework of relative advantage between teams in MOBA games.
 - MOBA Game Result (MGR) Analysis
 - Describe deciding factors of MOBA game result.
 - Discounted Evaluation
 - Evaluate current state with future result.
 - Time Slice Evaluation (TSE) Model
 - Map time slices to evaluation value.
- We apply MOBA-Slice to DotA2 and prove the effectiveness of MOBA-Slice with experiments.
 - Embody MOBA-Slice on a typical MOBA game, DotA2.
 - Process a dataset of a large number of DotA2 match replays.
 - Prove that the model can evaluate time slices of arbitrary DotA2 matches.
 - MOBA-Slice has an accuracy 3.7% higher than DotA Plus Assistant in predicting the game result.

MOBA Game Result (MGR) Analysis

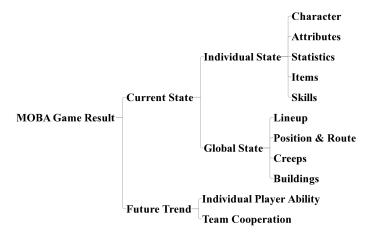


Figure 2: MGR Analysis

Definition of Discounted Evaluation Function

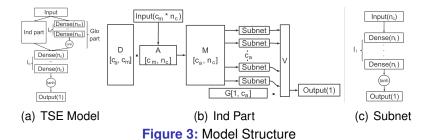
Definition 1

The function of discounted evaluation *DE* for a time slice *TS* is defined as:

$$DE_{TS}(R,t) = \frac{1}{\ln(1+r)^t} \times R = \frac{R}{\alpha t}$$
 (1)

where r is the discount rate, $\alpha = \ln(1 + r)$, t is the remaining time of the game, and

$$R = \begin{cases} 1, \text{ when Team A wins} \\ -1, \text{ when Team B wins} \end{cases}$$
 (2)


Introduction

Details about the Definition

- Inspired by Q learning
 - Discount factor γ : difference in importance between future rewards and immediate rewards.
 - Current value of a reward R_a after time t: $\gamma^t R_a$.
 - $\gamma = \frac{1}{1+r}$, where r = discount rate.
- Use logarithmic form to simplify exponent operation.
- Properties of $DE_{TS}(R, t) = \frac{1}{\ln(1+r)^t} \times R = \frac{R}{\alpha t}$
 - The sign of its value represents the final result, positive for A's victory, negative for B's.
 - Its absolute value is inversely proportional to t.
 - The value approximately represents the advantage team A has in comparison to team B.

Time Slice Evaluation (TSE) Model

Overview of Time Slice Evaluation (TSE) Model

Input: time slice

Output: value of DE_{TS}

2 Parts: Individual(Ind), Global(Glo)

Future trend in MGR analysis not implemented yet.

Individual Part of TSE Model

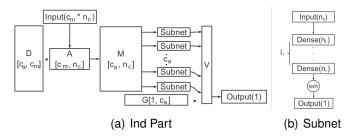


Figure 4: Structure of Ind Part

Individual(Ind) Part

- One subnet for each character to calculate its contribution separately
- Correspond to the individual state in MGR analysis
- Learn the unique features of each character, including design, strengths, and weaknesses.

Global Part of TSE Model

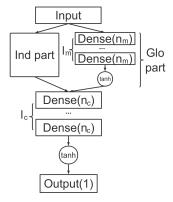


Figure 5: TSE Model

Global(Glo) Part

- Calculate the contribution of all the characters in a match
- Correspond to the global state in MGR analysis
- Learn the potential relationship of addition or restriction for a certain combination of characters

at or roc wood

For better distribution, change output into

$$y = \frac{1}{DE_{TS}(R, t)} = \frac{\alpha t}{R}$$
 (3)

• Transform to correspond to the range of tanh function

$$y_{scaled} = -1 + 2 \times \frac{y - y_{min}}{v_{max} - v_{min}} \in [-1, 1]$$
 (4)

Transform prediction back

$$\hat{y}_{rescaled} = y_{min} + \frac{\hat{y} + 1}{2} \times (y_{max} - y_{min})$$
 (5)

Extract prediction of t and R as

$$\hat{t} = |\hat{y}_{rescaled}|/\alpha$$
 (6)

$$\hat{R} = sign(\hat{y}_{rescaled}) \tag{7}$$

Introduction

Metrics of TSE Model

- Mean absolute error (MAE) (also the loss function)
- Mean squared error (MSE)
- Rescaled MAE

$$MAE_{rescaled}(\hat{y}, y_{scaled}) = MAE(\hat{y}, y_{scaled}) \times \frac{y_{max} - y_{min}}{2}$$
 (8)

Lemma 2

$$|\hat{y}_{rescaled} - y| \ge \alpha \left| \hat{t} - t \right|$$
 (9)

Theorem 3

$$MAE_{rescaled}(\hat{y}, y_{scaled}) \ge \alpha MAE(\hat{t}, t)$$
 (10)

The value of $MAE_{rescaled}(\hat{y}, y_{scaled})/\alpha$ can be viewed in units of time to reveal the mean error of prediction.

Apply MOBA-Slice to DotA2

- DotA2 replay file
- Replay parser from OpenDota project
- Interval messages
- Selected information for time slices
 - Character hero id
 - Attributes: life state, gold, experience, coordinate(x, y)
 - Statistics:
 - deaths, kills, last hit, denies, assists
 - stacked creeps, stacked camps, killed towers, killed roshans
 - placed observer, placed sentry, rune pickup, team-fight participation
 - Items: 244 types

Data Processing

Introduction

Data Collection and Parsing

- Steam API get the list of all matches of professional game leagues¹.
- OpenDota API get detailed information of matches including the URL of its replay file on Valve's servers.
- OpenDota's parser generate interval messages from replay files
- 105,915 matches of professional leagues, over 3 TB.

¹Data processing took place in Oct. 2017

Data Generating

- Time slice vectors
 - Created every 60 seconds of game time
 - $263(each) \times 10(heroes) + 1(game time) = 2,631 dimensions$
- Value of DE_{TS}
- 2,802,329 time slices generated from 71,355 matches²

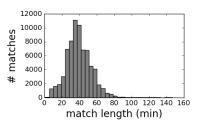


Figure 6: Distribution of Match Length

²Invalid data dropped due to game version issues, file corruption or known limitation of the parser

Introduction

Setup for First Training

- Only use time slices from the last 50% time in each match³
- Begin with training and testing partially.
 - Ind part
 - Glo part
 - Whole TSE model
- Regard TSE model as a multi-output model to avoid training different parts unequally.
- Loss function

$$\textit{loss} = \textit{MAE}(\textit{y}, \hat{\textit{y}}) + \mu \times \textit{MAE}(\textit{y}, \hat{\textit{y}}_{\textit{Ind}}) + \nu \times \textit{MAE}(\textit{y}, \hat{\textit{y}}_{\textit{Glo}})$$
 (11)

 First 90% for training, 5% for validation, and 5% for testing, later 10-fold cross validation.

³In later experiments whole matches and other range of game time are used

First Training of TSE Model

Hyper-parameters and Metrics

Table 1: Hyper-parameters of TSE model

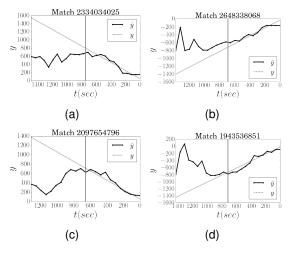

name	r	Cm	Ca	n _c	I _i	n _i	r _d
value	<i>e</i> – 1	10	114	263	3	40	0.5
name	n _m	I _m	n _c	I _c	μ	ν	
value	400	4	4	3	0.3	0.3	

Table 2: Metrics of TSE Model

Rescaled MAF

	MAE	MSE	(minutes)
Blind prediction	0.5178	0.3683	37.91
Ind part	0.1523	0.0339	11.15
Glo part	0.1072	0.0290	7.85
TSE model	0.1050	0.0287	7.69
TSE model (10-fold cross validation)	0.10539	0.02794	7.716

Performance on Sample Matches

- Previous: random shuffled time slices
- Simulate working on ongoing matches
- Successfully fit y in the last half of matches (right side of the vertical line)

Figure 7: Performance on Sample Matches

DotA Plus

- Unveiled in an update of DotA2 on March 12, 2018
- Plus Assistant provides a real-time win probability graph
- Praised as the "Big Teacher" by Chinese players due to its accurate prediction

Figure 8: Win Probability Graph of DotA Plus Assistant

Compare DotA Plus Assistant with MOBA-Slice

- Tournament of DotA2 Asian Championship, March 29th -April 7th
- 72 matches valid, downloaded and manually capture winning probability graph
- Feed matches to trained TSE model to get output
- Sample prediction and compare with real result to calculate the accuracy at specific game percentage

Table 3: Discretization of outputs

Result	DotA Plus Assistant	MOBA-Slice		
Radiant's victory	Above the middle line	Positive value		
Dire's victory	Below the middle line	Negative value		
Unknown	At the middle line	Zero		

Comparison with DotA Plus Assistant

Result of Comparison

 The average accuracy of MOBA-Slice is 3.7% higher than DotA Plus Assistant at predicting the game result.

 Table 4: Prediction Accuracy of MOBA-Slice and DotA Plus Assistant

Game time percent			ıt 10%	20%	20%			40%	
	DotA Plus	s Assistar	nt 0.416	7 0.513	0.5139		2	0.6111	
MOBA-Slice			0.569	94 0.5417		0.6111		0.7083	
	50%	60%	70%	80%	!	90%	Α	verage	
	0.6806	0.7500	0.7778	0.8472	0	.9444	(0.6821	
	0.7083	0.7222	0.8056	0.8611	0	.9444	(0.7191	

The Disparity of Instability in Different Parts of Matches

- Train Glo part with data of every 10 percent of game time.
- Loss decreases as a match goes on, indicating the decline of instability.

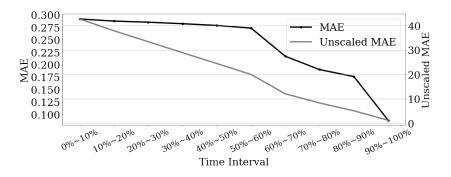


Figure 9: Experiments on Different Intervals

Find a Proper Range of Training Data

- Experiments on larger intervals.
- Loss decreases as the game progresses.
- As time interval gets larger, the model learns from more time slices but the loss keeps growing.

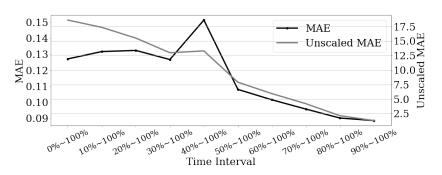


Figure 10: Experiments on Larger Intervals

Conclusion

- MOBA-Slice a well-designed framework evaluating relative advantage between teams
 - MGR analysis
 - Discounted evaluation
 - TSE model
- MOBA-Slice on DotA2: effectiveness, better at result prediction than DotA Plus Assistant
- Foundation for further MOBA related research which requires evaluation methods

Future Work

- Include the part of future trend in MGR analysis into TSE model, design rating algorithm for players and teams.
- Apply and test MOBA-Slice on more MOBA games.
- Improve TSE model to sequential prediction model.

Thanks

Thanks for your attention!